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Abstract: In the formal analysis of value capture, with the exception of biform games, strategy 

scholars typically employ cooperative game theory. Yet, agents frequently bargain in the shadow 

of non-negotiated interactions, which may stem from externalities or from transactions governed 

by protocols. Such interactions may occur if negotiations fail, in which case they determine what 

an agent can capture acting on its own, or they may occur between groups of agents that negotiate 

within their respective groups. In either case, understanding the non-negotiated interactions is 

required to analyze the associated cooperative game. I propose the concepts of negotiation groups 

and hybrid games to study such combinations of cooperative and non-cooperative interactions. 

Applications demonstrate how the nature and intensity of the non-negotiated interactions 

determine value capture. I also show that biform hybrid games feature a novel type of value-based 

business strategy in which the stage-one actions do not directly affect the agents’ positions but 

impact the non-negotiated interaction between them.   

 

Keywords: Value capture theory, cooperative game theory, noncooperative game theory, 

bargaining, coalitions, core, characteristic function 
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1. Introduction 

The military strategist von Clausewitz (1832) famously stated that war is the continuation of 

politics by other means. Similarly, in the context of business strategy, if negotiations fail then 

firms will often interact in other, less cooperative ways. This includes competing on the market 

instead of merging, fighting a standards war instead of agreeing on a common technology, or 

engaging in patent litigation instead of closing a licensing deal. When agents negotiate, they do so 

in the shadow of these potential non-negotiated interactions (NNIs). Agents may also negotiate 

among each other while facing, as a group, NNIs with outside groups. These interactions affect the 

value that each subgroup can claim in negotiations. For example, more intense competition 

between gaming platforms may strengthen, in negotiations within a platform, the position of a 

game developer vis-à-vis the console maker.  

This paper focuses on combinations of negotiated and non-negotiated interactions as sketched 

above. I propose the integration of elements of noncooperative game theory into strategy analysis 

based on cooperative game theory, or “value capture theory,” as recently reviewed and synthesized 

by Gans and Ryall (2017). 

In formal analyses of the strategic interaction between firms, researchers have employed 

noncooperative as well as cooperative game theory. For several decades after von Neumann and 

Morgenstern’s (1944) seminal work, the literature most widely employed noncooperative game 

theory analysis, a state of affairs that has been critiqued by scholars like Brandenburger and Stuart 

(1996) and, in the field of economics, by Maskin (2016). Since the 1990s, cooperative games have 

gained popularity in management research, starting with Brandenburger and Stuart’s (1996) 

analysis of value based business strategies. Scholars have used cooperative game theory to study 

the general determinants of value capture (MacDonald and Ryall 2004, Montez et al. 2018), the 
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advantages of occupying a broker position in a network (Ryall and Sorenson 2007), the effects of 

bilateral bargaining on surplus division (de Fontenay and Gans 2014), and the measures that 

agents can take, in the first stage of a “biform game” to prepare for subsequent negotiations 

(Brandenburger and Stuart, 2007). Other studies have addressed more specific settings and 

questions such as buyer-supplier relationships (Chatain 2011, Chatain and Zemsky 2011, Obloj 

and Zemsky 2015), outsourcing (de Fontenay and Gans 2008), new market entry (MacDonald and 

Ryall 2018), vertical integration (de Fontenay and Gans 2005), and the role of consumer demand 

(Adner and Zemsky 2006).  

Most of the above studies exclusively employ cooperative game theory (with the exceptions of 

Brandenburger and Stuart (2007) and de Fontenay and Gans (2005, 2014)). Yet, NNIs matter in 

the real world, and should be modeled appropriately in formal strategy analysis. Two types of 

NNIs deserve consideration: potential NNIs that occur in the event that negotiations fail, and 

realized NNIs that occur between agents or groups that will not, or cannot, negotiate with each 

other. I discuss both types in turn.  

The value that an agent or a group of agents could capture alone is an important factor in any 

negotiation. Sometimes, this value is independent of the actions of outsiders, in which case the 

agent simply needs to select its optimal action. In general, however, it will depend on the actions 

of other agents. For instance, if licensing negotiations between a biotech firm and a pharmaceutical 

corporation fail, the former may enter the product market and compete with the incumbent, or join 

forces with a competing corporation. To analyze such situations, von Neumann and Morgenstern 

(1944) assume a maximin rule, which is conservative but not necessarily realistic. More recent 

studies assume that the focal group plays a noncooperative game with the agents outside of it 
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(Zhao 1992, Carraro and Siniscalco 1993, Chander and Tulkens 1997, Ray and Vohra 1997), 

which yields a natural payoff for the group if the game has a unique Nash equilibrium.  

Actually occurring NNIs also matter for value capture. In a cooperative interaction, agents may 

be organized into groups in such a way that they negotiate with others in the same group, but not 

with outsiders. For instance, a retailer and its suppliers conduct negotiations with each other, but 

not with consumers; instead, the retailer posts prices and consumers decide whether and how much 

to buy. In this example, the outside agents (consumers) are passive in the sense of lacking strategic 

interaction with the negotiation group. Thus, the NNI results in an optimization problem for the 

retailer rather than a noncooperative game. An example of an NNI with strategic interaction are 

the externalities that the retailer exerts on firms located nearby, on competitors but also on 

complementors such as gas stations. Again, noncooperative games provide an appropriate 

approach. Montez et al. (2018) model groups unconnected by negotiations, which they refer to as 

value networks. The authors analyze how the option to join a different group gives an agent 

leverage in negotiating with its current group. They do not, however, address NNIs between the 

groups.  

To integrate cooperative and noncooperative game theory for strategy analysis, I propose the 

concept of hybrid games. The player set 𝑁 is divided into 𝑘 negotiation groups 𝑁1, …, 𝑁𝑘 such 

that the players within one group can negotiate with each other, while players in different groups 

cannot.1 If there is only one negotiation group, 𝑁1 = 𝑁, then the value 𝑣(𝐽) that a subgroup 𝐽 ⊂ 𝑁 

                                                 

1  This definition parallels that of the “focal value partition” by Montez et al. (2018: 2720). The difference is, however, that the 

elements of a focal value partition are “transaction networks”, i.e., sets of agents connected through transactions. In contrast, a 

negotiation group is defined by negotiation linkages between its members. I will elaborate on this distinction in Section 3.  
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can capture is given by its payoff in the Nash equilibrium of a noncooperative game played by 𝐽 

and the other players. Those, I assume, organize into a known partition, and the resulting game has 

a unique Nash equilibrium. If there is more than one negotiation group, then a subgroup 𝐽 ⊂ 𝑁𝑗  

considering acting alone has the additional option of joining one of the other negotiation groups. 

The value 𝑣(𝐽) it can capture is given either, following Zhao’s (1992) “hybrid solution” of n-

person games, by the Nash equilibrium (assumed to exist and to be unique) of the noncooperative 

game it plays with the players in 𝑁𝑗\𝐽, organized into a known partition, and the other negotiation 

groups; or, if this is larger, by the value it adds to that negotiation group where it adds most, 

provided this is less than what it adds to its original negotiation group. Payoffs to negotiation 

groups are determined by the Nash equilibrium (assumed to exist and to be unique) of the 

noncooperative game played between them. The calculation of 𝐽’s value capture in case it switches 

negotiation groups builds on Montez et al.’s (2018) definition of “direct competitive intensity,” 

generalized to account for strategic interactions between the groups.  

With increasing numbers of agents, hybrid games quickly become very complex. However, 

when applied to settings with few players they are tractable while providing novel insights. The 

concept captures essential aspects of strategic behavior that arise from the combination of 

negotiated and non-negotiated interactions. Explicitly modeling the NNIs that determine the value 

a coalition can capture on its own provides a solid basis for the cooperative game that the agents 

play. In addition, it allows for the study of environmental changes that affect NNIs, such as 

increased competition due to deregulation, on negotiation outcomes. Moreover, hybrid games can 

readily be combined with biform games, thus capturing how actions taken in the first stage of a 

biform game affect negotiations by modifying the potential NNIs underlying the second stage.  



 

   

5 

 

In the following section I discuss in more detail several aspects of value capture theory that 

call for an integration of noncooperative game theory. In Section 3, I formalize the concept of 

hybrid games. I illustrate the concept in Section 4 using as examples a Cournot duopoly, 

competing gaming platforms, and biform games, and conclude in Section 5.  

2. Noncooperative games in value capture theory 

In this section, I discuss when and how noncooperative games may be productively integrated into 

value capture theory. I first address under which conditions cooperative vs. noncooperative game 

theory are best suited to model interactions between economic agents. I then discuss NNIs 

between negotiation groups and how they can impact negotiations within each group. Finally, I 

discuss the case of NNIs between a subgroup of a negotiation group acting on its own and the 

other players. 

2.1. Negotiations vs. non-negotiated interactions 

One key difference between the two branches of game theory is that cooperative game theory 

“employs a notion of ‘free-form’ interaction between players” (Brandenburger and Stuart 1996: 7) 

while a noncooperative game (based on NNIs) requires assumptions about the “protocol” (Kreps 

1990: 92) by which the players choose their actions. Real interactions may fit one or the other 

model, and both types occur regularly in business life. For example, interactions governed by a 

protocol occur between a retailer and consumers, between competing firms building up production 

capacity, and between co-located firms exerting demand externalities on each other. “Free-form” 

negotiations happen between most contract partners as soon as the deal value is too large and 

transactions are too infrequent for some pre-defined, protocol-based interaction.  
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A consequence of cooperative games requiring fewer assumptions is that they make less 

precise predictions: frequently, the core (the most widely used solution concept) contains a 

continuous set of solutions rather than a single allocation, while Nash equilibria in noncooperative 

games are typically few or even unique. However, while this loss of predictive power may appear 

disadvantageous, precision is of little value if it is spurious. Furthermore, this feature makes it 

possible to isolate the effects of competition from those of “persuasive resources” (Gans and Ryall 

2017) and to introduce a novel concept of competitive intensity (Makowski 1980, Ostroy 1980, 

Montez et al. 2018). 

A second, related, difference between the two branches of game theory is that in cooperative 

games players can negotiate about the actions they take and the division of the value created, and 

can pin down their agreement in an enforceable contract. This possibility usually ensures that a 

group of players attains the maximum value that their sets of available actions allow, and thus 

avoids inefficient outcomes like those that result from monopolistic pricing.2 As Brandenburger 

and Stuart (1996: 18) put it, cooperative game theory defines “the size of the overall pie […] under 

an assumption of ‘maximal’ flows of resources from suppliers to firms and of products from firms 

to buyers […]”  This assumption in general does not hold for NNIs, where inefficient outcomes 

are the norm rather than the exception. Consider, for example, the problem of deadweight-loss if a 

seller posts a single price for all potential buyers.  

As a consequence, results from cooperative game theory may be misleading when applied to 

groups of agents that are not all connected through negotiated interactions. A case in point is the 

“added value” (Brandenburger and Stuart 1996) of a player A, defined as the increase in the value 

                                                 

2 Ray and Vohra (1997) point out exceptions to this rule. 
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created by all players together when A joins. With unrestricted bargaining, one can conclude that 

A can capture at most its added value. Otherwise, however, it may be that A’s joining the group 

shifts the value distribution among the other members in such a way that A can capture more than 

its added value (cf. Brandenburger and Stuart 1996: 19)—for example, if its contribution has a 

substitutive relationship with that of some other network member. Thus, the calculation of the 

maximal amount a player can capture requires an understanding of the—potentially 

noncooperative—interactions among the players.  

We see that, just as imposing a specific protocol on interactions that are actually free-form 

negotiations leads to fallacious results, it is equally inappropriate to assume unrestricted 

bargaining when in fact a protocol exists. For instance, it makes little sense to model a prisoner’s 

dilemma-type situation as a cooperative game, since it is precisely the impossibility to jointly 

commit to a set of actions that creates the dilemma and the resulting inefficiency.  

The above discussion suggests to allow noncooperative games a more prominent place in value 

capture theory. Brandenburger and Stuart (2007) have pioneered such combinations with the 

concept of biform games, where agents in a non-cooperative stage take actions that affect their 

positions in the subsequent cooperative stage. However, real-world combinations of the two types 

of interactions may differ from the specific timing structure of biform games. In particular, they 

may occur (1) if a group of agents that negotiate among each other faces NNIs with other groups, 

and (2) if negotiating agents threaten to revert to some form of NNI in case no agreement is 

reached. I discuss both cases in turn.  

2.2. Non-negotiated interactions between negotiation groups 

Negotiations among the members of a negotiation group are usually analyzed without making 

explicit their linkages to outside agents. Brandenburger and Stuart (1996: 9) describe the 
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underlying assumption in a situation where a triad of manufacturer, buyer, and supplier constitutes 

the negotiation group: “[…] in arriving at their willingness-to-pay and opportunity-cost numbers, 

the buyer and supplier were assumed to have access to well-defined prices elsewhere in the 

economy. […] Loosely speaking, the bargaining problem outside the game under consideration is 

imagined to have already been solved.”  

However, if outside agents react to actions by the focal negotiation group, then this assumption 

is no longer justified. In such a case, reactions by outsiders will in general affect what the focal 

group as a whole can capture, what each subgroup can secure, and to what extent the threat to join 

an outside group gives a subgroup leverage in its negotiations. I discuss the three points in turn.  

The value captured by the focal group as a whole will depend on the interaction between the 

group and the outside agents. For example, if a manufacturer and its suppliers negotiate to achieve 

a price reduction of a consumer product, a competing manufacturer may in turn decrease its price, 

thus reducing the focal group’s value capture compared to a situation without competitive reaction. 

Such situations require analyzing the NNI between the focal group and outside groups in order to 

understand the negotiations within the focal group. In the field of mathematical game theory, Zhao 

(1992) was the first to study this situation.3  

Similarly, the value that a subgroup of the focal group can secure may depend on NNIs with 

outsiders. As an illustration, imagine two competing shopping malls, A and B. In each mall, the 

                                                 

3  Zhao (1992) assumes that agents are exogenously partitioned into groups that play a noncooperative game while their agents 

play cooperative games internally. His concept of “hybrid solutions” of games in normal form is thus intermediate between the 

cooperative solution (one single group) and the non-cooperative solution (each agent a group). Zhao’s (1992) main point is to 

show conditions for the existence of hybrid solutions. The idea to define the characteristic function for each player set in each 

partition goes back to Thrall and Lucas (1963), who take the values of the characteristic function as exogenously given. 
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stores negotiate about joint marketing efforts that benefit the mall as a whole. If a Store S in Mall 

A acts on its own—i.e., does not become party to a joint agreement on marketing measures—then 

due to the positive externalities of marketing activities on the other stores in A it will invest less, 

and so will the other stores. As a result, the mall overall is weakened relative to B, to an extent 

determined by the intensity of the competition (a form of NNI) between the malls. This 

competition also affects the value that S can capture when acting on its own.  

For a subgroup of a negotiation group that faces NNIs with outside agents, “acting on its own” 

may comprise the option to join an outside group. In this context, Gans and Ryall (2017: 18-20) 

discuss the example of two value networks, defining a value network as “a collection of agents 

connected to one another via chains of transactions […].” They consider a firm (F) that is initially 

part of Network A. By defecting, F reduces A’s value capture by $50. In turn, by joining Network 

B it increases the value that B captures by $30. Assuming, in keeping with the logic of coalitional 

games, intense competition between the networks for F, F can secure at least $30. Montez et al. 

(2018) refer to this measure as F’s “direct competitive intensity.”  

Again, NNIs between the networks may come in. To stick with the above example, F’s leaving 

Network A may not only reduce A’s value capture, but may also increase B’s—even without F 

joining B—if F’s defection weakens A’s position in competition with B. To what extent this is the 

case depends on the type and intensity of the NNI between the networks. Thus, an agent’s direct 

competitive intensity may also depend on NNIs. 

The above discussion raises the issue of endogenous network (or coalition) formation, a 

question addressed by Aumann and Drèze (1974), Aumann and Myerson (1988), Maskin (2016), 

and a number of other scholars. For the time being, I avoid this type of endogeneity and, apart 

from considering defections, restrict the analysis to an exogenously given coalitional structure.  
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2.3. Capturing value “alone” 

Compared with the above case of several negotiation groups, the case of a single negotiation group 

appears deceptively simple. However, even with unrestricted bargaining among all players, 

bargaining restrictions are inherent to the definition of a cooperative game. To see why, consider 

the central assumption in cooperative game theory that a group of players can capture a certain 

value “on its own,” which is typically interpreted as meaning that the group members “limit their 

transactions to one another only” (Gans and Ryall 2017: 24). This seemingly innocuous 

assumption is problematic in the case of externalities. Even if a group can shun transactions with 

all other players, the value that it captures may still depend on the outside players’ actions. 

Further, the fallback option in case negotiations fail may not be to forgo transactions entirely, but 

rather to conduct transactions according to some standard protocol. A case in point are the UK’s 

Brexit negotiations with the European Union, the failure of which would mean that the UK and the 

Union trade under rules set by the World Trade Organization. In such cases, a sensible mapping of 

the real-world situation at hand to a game-theoretic model requires an understanding of the 

interactions of each subgroup of players with the outside players, a question that has been studied 

in the mathematical literature on game theory by Scarf (1971) and subsequently other scholars. 

These interactions are genuinely noncooperative, an observation that calls for the application of 

noncooperative game theory.  

Carraro and Siniscalco (1993) as well as Chander and Tulkens (1997) pursue this path in 

studies of the problem of international pollution (where players exert negative externalities on 

each other), determining the value that a group of players can capture on its own as its Nash 

equilibrium payoff in a noncooperative game between the group and the outside players. Carraro 

and Siniscalco (1993) assume that the outside players act as one coalition, while Chander and 
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Tulkens (1997) make the opposite assumption, i.e., that they act as individual players. Ray and 

Vohra (1997) relax this assumption, assuming that the outside players endogenously organize into 

coalitions. In that case, in order to determine the value that a group of players can capture on its 

own one needs to analyze, for each possible coalition structure, the noncooperative games between 

the focal group and all other coalitions, and determine which coalition structure will emerge in 

equilibrium. While this procedure quickly becomes very complex with increasing numbers of 

agents, it is tractable in simple, relevant cases. With three firms and externalities, for example, the 

value that one firm alone can capture depends on the noncooperative game it plays either with the 

other two firms individually or with the coalition they can form. The coalitional structure that is 

advantageous to the two firms is assumed to emerge in the equilibrium of the potential game the 

firms would play if the focal firm was to act on its own. 

In this sense, noncooperative games lie at the very heart of cooperative games as soon as there 

are externalities. If, in a negotiation, a group of players threaten to leave the table and to act on its 

own, they threaten in effect to play a noncooperative game against the remaining players. 

3. Defining hybrid games 

I propose a formalization of the concepts and arguments presented above in the definition of 

hybrid games. The purpose of this concept is not to provide a basis for mathematical proofs of the 

existence and uniqueness of solutions. Rather, it is intended as a tool for analyzing business 

strategy situations that involve both cooperative and non-negotiated interactions.4  

                                                 

4  The idea to derive a cooperative game from a game in normal form goes back to von Neumann and Morgenstern (1944). As 

Scarf (1971: 170) puts it: “These examples illustrate the general proposition that the possibilities open to a coalition should 

perhaps be viewed as derived from a prior specification of the game in its normal form; that is, in terms of the strategic choices 
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A hybrid game 𝐻 = (𝑁, 𝑃, {𝐺𝑄}𝑄𝜖ℬ) is defined by the player set 𝑁, a partition 𝑃 that sections 

the player set into disjoint negotiation groups 𝑁1, …, 𝑁𝑘, and the set {𝐺𝑄}𝑄𝜖ℬ of noncooperative 

games. Following Montez et al. (2018), I refer to 𝑃 as the “focal partition.” Figure 1 provides an 

illustrative example with 𝑛 = 9. In the example (Figure 1a), the partition contains three 

negotiation groups, 𝑃 = {{1,2,3}, {4,5,6,7}, {8,9}}.  

--- Figure 1 about here --- 

The games 𝐺𝑄 are indexed by a partition 𝑄 of the player set. The relevant partitions are 

elements of the set ℬ, which comprises two types of partitions, ℬ = ℬ1 ∪ ℬ2. Partitions in ℬ1 are 

refinements of 𝑃 that further divide at most one of the negotiation groups 𝑁𝑗. These partitions 

model the potential value capture of each subgroup of 𝑁𝑗 if it was acting on its own, while taking 

account of the NNIs that this subgroup is facing with the other subgroups of 𝑁𝑗 and with the other 

negotiation groups 𝑁𝑚, 𝑚 ≠ 𝑗. The second type of partitions, elements of ℬ2, are similar to the 

original partition 𝑃, except that a proper subgroup of one of the negotiation groups, 𝐽 ⊂ 𝑁𝑗 , has 

defected to some other negotiation group, 𝑁𝑚. The respective partition thus consists of 𝑁𝑗\𝐽, 𝑁𝑚 ∪

𝐽, and all other negotiation groups 𝑁𝑖, 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑚. These partitions capture a subgroup’s 

option—if that option exists—to threaten defection to some other negotiation group, and use this 

threat in its negotiations with the other group members.  

                                                 

open to the individual players, and their evaluations of the outcomes. von Neumann and Morgenstern attempted to do precisely 

this […]” 
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With the above definitions I derive the characteristic function for 𝐽 ⊆ 𝑁𝑗  as follows. First, I 

assume that if 𝐽 is acting on its own without joining some other negotiation group, then the players 

in 𝑁𝑗\𝐽 organize into a known partition, 𝑄𝐽 ∈ ℬ1.5 For illustration, Figures 1b and 1c show the 

coalitions that can form if the one-player coalition 𝐽 = {1} leaves the negotiation group, 𝑁1 =

{1,2,3}. The remaining players in this group may form a single coalition {2,3} (Figure 1b) or act as 

individual players (Figure 1c). Which of these partitions arises depends on the setting; in a 

Cournot quantity cartel, for example, defection of one player would make it optimal for the others 

to split up as well. Further, I assume that the noncooperative game 𝐺𝑄𝐽 has a unique Nash 

equilibrium in pure strategies. I define the value 𝑣1(𝐽) that 𝐽 can capture by acting on its own, but 

without joining some other negotiation group, as its payoff in this equilibrium.  

Regarding 𝐽’s option to defect, let 𝑄𝐽,𝑚 denote the partition that occurs if 𝐽 joins 𝑁𝑚. I assume 

that the game 𝐺𝑄𝐽,𝑚  as well as the game 𝐺𝑃 played between the original negotiation groups have a 

unique Nash equilibria in pure strategies. 𝐽’s added value by joining 𝑁𝑚 is then given by the 

payoff that 𝑁𝑚 ∪ 𝐽 receives in the Nash equilibrium of 𝐺𝑄𝐽,𝑚  minus what 𝑁𝑚 receives in the 

equilibrium of 𝐺𝑃. I denote the maximum of these added values over all negotiation groups 𝑚 ≠ 𝑗 

as 𝑣2(𝐽), and assume that it is less than 𝐽’s added value6 to 𝑁𝐽—a plausible assumption since 

otherwise the focal partition 𝑃 would be unstable.  

                                                 

5  To keep the formalism simple, I refrain from specifying how 𝑄
𝐽
 is determined, thus avoiding the thorny issue of endogenous 

coalition formation (e.g., Maskin 2016). In sufficiently simple and tractable cases, the selection of 𝑄
𝐽
 will be obvious. 

6  More appropriately, one should speak of 𝐽’s “subtracted value”, i.e., the loss in value for the negotiation group 𝑁𝑗 caused by 𝐽’s 

defecting.  
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The characteristic function of the coalition 𝐽 is then given by the maximum of what it can 

achieve by acting on its own and by joining some other negotiation group (if that option exists), 

𝑣(𝐽) ≔ max{𝑣1(𝐽), 𝑣2(𝐽)}. Based on 𝑣(. ), the cooperative game within each negotiation group 

can be solved.  

Hybrid games can become rather complex. In the example shown in Figure 1, one needs to 

analyze a minimum of 13 noncooperative games if defections are excluded, and an additional 44 if 

they are allowed.7 For many practically relevant cases, however, the complexity is manageable. In 

the simplest case of two firms negotiating in the shadow of an NNI, one needs to define and solve 

just a single noncooperative game. Or, consider the case of six players, organized into two 

negotiation groups of three players each, 𝑁1 = {1,2,3} and 𝑁2 = {4,5,6}, and assume that 

defections are excluded. Then the number of different Nash equilibria to be determined equals 

nine: one for the focal partition, one for each of the four finer partitions of 𝑁1 

({{1}, {2}, {3}},{{1}, {2,3}}, {{2}, {1,3}}, {{3}, {1,2}}), and one for each of the four finer partitions 

of 𝑁2. If it is known that the remaining players in 𝑁𝑗 form a negotiation group if a single player in 

𝑁𝑗 acts on its own, then this number is reduced to seven. It is further reduced to four if there is 

symmetry between 𝑁1 and 𝑁2. This is a manageable degree of complexity, even with six players.  

                                                 

7  If defections are excluded, the minimum obtains if for each coalition 𝐽 leaving its negotiation group 𝑁𝑗 the remaining players 

form a single coalition. It is calculated by adding up, over all negotiation groups, the number of possibilities to split the group 

into two subsets, and adding one for the game played by the focal partition. This calculation yields 3 + 7 + 1 + 1 = 13. If 

defections are allowed, then there are two additional games to be considered for each proper subset of each negotiation group, 

hence 2 × (6 + 14 + 2) = 44.  
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4. Applications 

In the following, I discuss three cases that illustrate the concept of hybrid games. In the first, a 

Cournot quantity cartel, the focus is on negotiations in the shadow of competition between the 

negotiators. In the second case, a console manufacturer and a game developer negotiate to 

coordinate their activities, faced with competition in a marketplace that includes a second gaming 

platform. The third case combines the concepts of hybrid games and of biform games.  

4.1. Cournot quantity cartel 

As a simple illustrative example, consider the case of three firms negotiating to form a quantity 

cartel. The standard Cournot demand function defines the protocol that governs the interaction 

with buyers, where market price 𝑝 is given by 𝑝 = 1 − 𝑞1 − 𝑞2 − 𝑞3. The single negotiation group 

is the set of all three firms, 𝑃 = {{1,2,3}}. Since there is only one negotiation group, ℬ = ℬ1 =

{{{1}, {2}, {3}}, {{1}, {2,3}}, {{2}, {1,3}}, {{3}, {1,2}}}. The hybrid game is thus given by 𝐻 =

(𝑁, 𝑃, {𝐺𝑄}𝑄𝜖ℬ1
) = ({1,2,3}, {{1,2,3}}, {𝐺𝑄}𝑄𝜖ℬ1

), where the games 𝐺𝑄 are simple Cournot 

models with the number of players equal to the cardinality of the partition 𝑄.  

To calculate the value that a single firm 𝑖 can capture we need to determine whether, if firm 𝑖 

acts on its own, the remaining firms form a coalition or act individually. In the first case, a 

standard Cournot duopoly, they would jointly capture 1 9⁄ , and in the second each would capture 

1 16⁄ . Thus, they are better off acting individually (as is well known), and so it is plausible to 

assume that the game firm 𝑖 plays when acting on its own is a Cournot game with three players, 

each of which earns 1 16⁄ . The characteristic function of the resulting cooperative game is thus 

given by 𝑣({𝑖}) = 1 16⁄ , 𝑣({𝑖, 𝑗}) = 1 9⁄  (𝑖 ≠ 𝑗), and 𝑣({1,2,3}) = 1 4⁄ . Its core is the set of all 

allocations (𝑥1, 𝑥2, 𝑥3) that fulfill 𝑥𝑗 ≥ 1 16⁄  for all 𝑗, and 𝑥1 + 𝑥2 + 𝑥3 = 1 4⁄ .  
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This simple example illustrates the necessity of understanding the potential noncooperative 

game that agents would play if they failed to reach an agreement. I now turn to less stylized and 

more complex cases.  

4.2. Competing gaming platforms 

Negotiations are particularly fruitful and, unlike cartels, usually permitted if the negotiation 

partners complement each other. Such situations are common in the ICT industry. As an 

application from this field, consider the interaction between two game console makers (CM) and 

two game developers (GD), illustrated in Figure 2. CM 1 and GD 1, and similarly CM 2 and GD 2, 

develop products that are complementary to each other. I refer to a combination of a console and 

the complementary games as a bundle. There are a large number of consumers who buy at most 

one bundle. The console makers ship their products with some games included, such that 

consumers also value the consoles alone.  

The extent to which the agents exploit their potential for value creation depends on the actions 

they take with respect to product qualities and quantities. Those, in turn, depend on the negotiation 

and protocol structure that governs their interactions. I discuss four different, increasingly realistic 

scenarios, depicted in Figures 2a to 2d. Each figure shows, on the left, the actual negotiation and 

protocol structure. Agents within a box with a full line boundary engage in unrestricted 

bargaining: they form a negotiation group. A box with a dotted line boundary indicates that a 

protocol governs the interaction between the players and negotiation groups within it. The right of 

each figure shows the potential negotiation and protocol structure that would arise if GD 1 left its 

negotiation group and acted on its own.  

Numbers next to the boxes denote the value that the respective agent or negotiation group 

captures. Comparison with the left part of the figure yields GD 1’s added value. Calculating these 
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numbers requires setting up and solving the noncooperative game played in the respective 

situation. These analyses are omitted for brevity, as the purpose is to focus on the ultimate impact 

of the NNI.  

--- Figure 2 about here --- 

 Negotiation groups of firms and consumers 

In Figure 2a, I assume that CM 1, GD 1, and a consumer group (Consumers 1) form a negotiation 

group.8 Because of unrestricted bargaining, they will achieve the maximum possible value 

creation. The same holds for CM 2, GD 2, and the second consumer group. The negotiation groups 

are symmetric, each creating a value of 30.  

If GD 1 left its negotiation group to act on its own, how would it interact with CM 1 and 

Consumers 1? It may be that GD 1 actually ceases transacting with the other parties, in particular 

if CM 1 blocks the technical interface between its platform and GD 1’s games. However, doing so 

may not be in CM 1’s interest. Thus, it may also be that “acting on its own” means that GD 1 will 

sell to the consumer group via a protocol, i.e., an NNI.  

For illustrative purposes, I assume here that the former case happens and GD 1 ceases all 

transactions and captures a value of zero. CM 1 and Consumers 1 then capture a reduced value of 

15, less than with GD 1’s participation, due to the value of GD 1’s games and complementarity 

between console and game. The difference between the two values, 15, is GD 1’s added value, 

which constitutes an upper limit for what GD 1 can capture. In turn, the minimum GD 1 will 

                                                 

8  I call the potential buyers of one of the product bundles “consumers,” and the actual buyers “customers.” Consumers who do 

not buy any product capture a value of zero. Thus, the value captured by one of the consumer groups is the same as the value 

captured by the corresponding customer group. 
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contend with is zero, since it cannot capture any value on its own. Since the negotiation and 

protocol structure does not connect the second to the first negotiation group, the former is 

unaffected by GD 1’s (potential) move.  

 Negotiation groups of firms and consumers linked through protocol 

It is hardly plausible that a large group of consumers takes part in unrestricted bargaining: their 

interaction with firms is more appropriately modeled as a noncooperative game in which firms 

post unique prices. Figure 2b shows a negotiation and protocol structure in which CM 1 and GD 1, 

and CM 2 and GD 2, form negotiation groups, selling to separate groups of consumers. Within 

each group, the respective partners coordinate their quality and pricing decisions in such a way as 

to maximize the value they create and capture jointly, internalizing the externalities inherent in 

complementary products. Quantities are indirectly determined by how consumers react to the 

firms’ pricing. I assume the resulting deadweight loss reduces the overall value created by GD 1, 

CM 1 and their consumers to 25 (reduced from 30 in Scenario a), with the firms jointly capturing 

20 and their consumers 5.   

In this structure, if GD 1 acted on its own, then it would still capture value by selling its 

product to Consumers 1. Since the interaction between GD 1 and the consumers is realistically 

modeled as governed by a protocol, there is no reason to assume it would terminate if GD 1 acted 

on its own.9 In this situation, the overall value created by CM 1, GD 1, and their consumers falls 

compared to 1b (left) since the firms do not internalize the externalities they exert on each other 

                                                 

9  As mentioned earlier, CM 1 could in principle block the interface of its platform to GD 1’s games. However, since GD 1 is the 

only game developer offering games for CM 1’s platform and there is no repeated interaction, doing so would not be in CM 1’s 

interest and hence a non-credible threat.  
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through their product quality and pricing choices. I assume that CM 1 and GD 1 each capture 8 

and their consumers, 3, adding up to 19.  

What is GD 1’s added value in this situation? Looking at the transaction network consisting of 

CM 1, GD 1, and their consumers, GD 1’s added value is equal to 14 (25 minus 11). However, GD 

1 is only negotiating with CM 1, not with the consumer group. Thus, the consumers’ value 

increase when GD 1 joins, from 3 to 5, is not subject to the negotiation, and if GD 1 asked for 14 

in its negotiation with CM 1, the latter would prefer the value of 8 that it captures alone to the 

remainder of 20 minus 14. Thus, the relevant upper bound for what GD 1 can capture is its added 

value to the negotiation group consisting of itself and CM 1. We obtain an added value of 12 (20 

minus 8), down from 15 in Scenario a. Furthermore, the minimum that GD 1 will contend with is 

8, up from 0 in 1a. The more realistic assumption of a protocol-based interaction with consumers 

thus narrows down the interval of possible negotiation outcomes for GD 1, from [0,15] in Scenario 

a to [8,12] in b.  

 Negotiation groups competing for consumers 

In an even more realistic scenario, depicted in Figure 2c, I assume that each consumer interacts 

with all firms through a protocol, and decides which product bundle to buy, if any. Thus, the two 

negotiation groups exert externalities (NNIs) on each other via market competition. Each 

negotiation group, CM 1 plus GD 1 and CM 2 plus GD 2, determines its product qualities and 

prices in unrestricted internal bargaining, anticipating the consumers’ reaction and taking 

competition from the other coalition into account. The product bundles are horizontally 

differentiated, such that the sellers retain some market power.  

I assume that the resulting value distribution is symmetric, with each negotiation group 

capturing 18 and its customers capturing 9. Compared to Scenario b, left, each two-firm coalition 
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captures less, 18 instead of 20, due to competition. Each consumer group captures more, 9 instead 

of 5: lower prices increase consumer surplus, and in addition reduce deadweight loss since more 

consumers decide to buy.  

If GD 1 left the negotiation group with CM 1 and acted on its own (Figure 2c, right), then the 

same mechanisms are at work as in Scenario b. In particular, the lack of coordination between CM 

1 and GD 1 with respect to qualities and pricing will make their product combination less 

attractive. In this case, however, this reduction in attractiveness will make some consumers switch 

to the competing product bundle offered by CM 2 and GD 2. Those firms will furthermore adapt 

their quality and pricing decisions to the changed competitive situation.  

As a result, the total value captured by CM 1 and GD 1 is reduced when GD 1 leaves the 

negotiation group with CM 1, from 18 to 12 in Scenario c, compared to a reduction from 20 to 16 

in b. The consumers buying from CM 1 and GD 1 in the right-hand scenario in Figure 2c capture 

4, down from 9 in the left-hand scenario, while the consumers buying from the competing 

coalition capture 12, up from 9. This increase is due to an increase in the number of customers. It 

does not make up for the decrease in value captured by the other group, from 9 to 4, since overall 

the lack of coordination between CM 1 and GD 1 harms consumers. The coalition of CM 2 and 

GD 2 captures 22, up from 18 in the symmetric situation (Figure 2c, left). As for the corresponding 

consumer groups, this increase does not fully make up for the loss, from 18 to 12, that the other 

coalition incurs.   

How is GD 1’s added value determined in this case? As already argued in Scenario b, GD 1 

negotiates with CM 1 only, not with their consumers, such that its added value should refer to 

what the two firms can capture. One obtains an added value of 18 minus 6, equal to 12. As a result, 

possible negotiation outcomes for GD 1 lie in the interval [6,12].  
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This scenario underlines why added value should be calculated relative to a negotiation group 

rather than the industry as a whole. Some of the value of 18 – 6 = 12 that GD 1 adds to CM 1 is 

due to reduced value capture by the negotiation group consisting of CM 2 and GD 2, which goes 

down from 22 to 18 when GD 1 joins forces with CM 1. Similarly, the joint value capture of CM 1 

and Consumers 1 increases by 17 from 6 + 4 = 10 to 18 + 9 = 27 when GD 1 and CM 1 form a 

negotiation group, but by the same token the joint value capture of CM 2, GD 2, and Consumers 2 

goes down by 7 from 22 + 12 = 34 to 18 + 9 = 27. Thus, GD 1 can stipulate more in its 

negotiations with CM 1 than the additional value that its joining GD 1 creates on the industry 

level. 

 The option of defecting 

In the scenario illustrated in Figure 2d, GD 1 has the option of joining the competing platform. 

Assuming that the games offered by GD 1 and GD 2, respectively, are not perfect substitutes to 

each other, and ignoring potential costs of establishing compatibility with Platform 2, the new 

negotiation group consisting of CM 2 and both game developers (Figure 2d, right) will capture 

more value (in the illustration, 32) than CM 2 and GD 2 in the reference scenario (18). GD 1’s 

added value to Platform 2 thus equals 32 – 18 = 14, its direct competitive intensity (Montez et al., 

2018). At the same time, CM 1 alone captures much less than in a negotiation group with GD 1, 1 

compared to 18. GD 1’s added (or subtracted) value to CM 1 is thus 18 – 1 = 17, and its value 

capture in negotiations with CM 1 should lie between 14 and 17.  

The discussion of value creation and capture in the case of competing gaming platforms 

demonstrates that understanding the NNIs between the agents is crucial in analyzing cooperative 

interactions between them. Agents may purposefully manipulate the nature of these NNIs before 

the hybrid game takes place. Such manipulations can be analyzed using biform games.  
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4.3. Biform hybrid games 

Biform games (Brandenburger and Stuart 2007) and hybrid games both integrate elements of 

cooperative and noncooperative game theory, but they do so in fundamentally different ways. In 

this section, I show that combining these approaches is possible and allows for, among other 

things, a categorization of biform games.  

In the first noncooperative stage of a biform game, agents make strategic moves. The actions 

they take in this stage shape the competitive environment in which, in the second stage, the 

cooperative interaction takes place. Brandenburger and Stuart (2007) present several examples. In 

a branded-ingredient game, a supplier invests in raising customers’ willingness-to-pay for products 

containing its branded component, thus changing the setting for the cooperative interaction with 

the manufacturer in the second stage. In an innovation game, firms can invest in R&D to develop a 

new generation of their product, thus shaping the negotiations with buyers in the second stage. In a 

coordination game, three firms independently decide whether to incur the costs of switching to a 

new technology standard, where the value that each can capture in the subsequent cooperative 

stage depends on the choices made by the other firms. Finally, in a repositioning game, a firm may 

invest to raise the perceived quality of its product, thus improving its position in negotiations with 

buyers.  

In all of these examples, actions taken in the noncooperative stage improve the position of the 

respective agent in the subsequent cooperative interactions. Alternatively, such actions may 

weaken the position of competing agents, in line with Brandenburger and Stuart’s (1996) “value-

based business strategies” that target competitors.  

Hybrid games open up further possibilities. If the second stage of a biform game is a hybrid 

game, then actions taken in stage one may affect the interaction itself rather than directly affecting 
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the agents’ positions. For example, if acting on its own means firms compete, then a competitively 

strong firm may improve its position in the potential NNI, and hence the value it can capture 

alone, by increasing the intensity of competition. In the following, I analyze such a case in detail.  

Consider two sellers of horizontally differentiated goods that negotiate to form a price cartel. 

Following Hotelling’s (1929) classic model, buyers are distributed with unit density on the interval 

[0,1]. Sellers 𝐴 and 𝐵 are located at 0 and 1, respectively. Seller 𝑋, 𝑋 ∈ {𝐴, 𝐵}, has a unit cost of 

𝑐𝑋 and charges 𝑝𝑋 for its product. A buyer located at 𝑥 ∈ [0,1] has a willingness-to-pay of 𝑢𝐴 − 𝑡𝑥 

for 𝐴’s product and of 𝑢𝐵 − 𝑡(1 − 𝑥) for 𝐵’s. The maximum value creation per customer of Firm 

𝑋 is thus given by 𝑢𝑋 − 𝑐𝑋. The parameter 𝑡, which measures transportation cost in spatial 

interpretations of the model, describes customers’ loss in utility from not obtaining their most 

preferred product variant. Smaller 𝑡 implies a higher intensity of competition. Each potential 

customer buys either one unit of 𝐴’s product, one of 𝐵’s, or none.  

I distinguish two cases depending on the parameters. For sufficiently small values of 𝑡, the 

superior firm serves the entire market, while for larger 𝑡 each firm has a positive market share. For 

simplicity, I restrict the analysis to parameter ranges where the entire market is being served.10  

Let 𝛼 ≔ (𝑢𝐴 − 𝑐𝐴 − 𝑢𝐵 + 𝑐𝐵) denote 𝐴’s advantage over 𝐵 with respect to maximum value 

creation per customer (net of transportation cost), and 𝜇 ≔ (𝑢𝐴 − 𝑐𝐴 + 𝑢𝐵 − 𝑐𝐵) 2⁄  the firms’ 

average value creation per customer. Without loss of generality, I assume that Firm 𝐴 is superior 

to 𝐵, hence 𝛼 ≥ 0. All proofs are in the Appendix. In a cartel, the firms’ joint profits are given by 

the following equation: 

                                                 

10  If 𝑡 is large relative to 𝑢𝐴 and 𝑢𝐵, then the firms each serve only a “local” market and leave some potential buyers unserved. 

Since this case is not informative for the example of a biform hybrid game, I exclude it.  
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𝑣({𝐴, 𝐵}) =

{
 
 

 
 𝜇 − 𝑡 +

𝛼

2
: 𝑡 ≤

𝛼

2

𝜇 −
𝑡

2
+
𝛼2

8𝑡
: 𝑡 >

𝛼

2

 (1) 

In these expressions, the respective first term captures joint profits in the symmetric case 

without accounting for transportation cost (𝛼 = 0, 𝑡 = 0). The second term accounts for the fact 

that a seller needs to set its price below the willingness-to-pay of the customer most closely 

located to it in order to have a positive market share. The third term captures deviations from the 

symmetric situation. For interior solutions (second line), it is quadratic in 𝛼 because deviations 

imply not only differences in the firms’ margins, but also a shift in the position of the marginal 

customer.  

The firms’ fallback option in case they do not reach an agreement on cartel formation is to 

compete on price. Again, two cases need to be distinguished. 

𝑣({𝐴}) =

{
 

 𝛼 − 𝑡 : 𝑡 ≤
𝛼

3

(3𝑡 + 𝛼)2

18𝑡
: 𝑡 >

𝛼

3

            𝑣({𝐵}) =

{
 

 0 : 𝑡 ≤
𝛼

3

(3𝑡 − 𝛼)2

18𝑡
: 𝑡 >

𝛼

3

 (2) 

Figure 3 shows that joint value creation (Equation 1) decreases strictly monotonically in 𝑡, 

which is plausible. In competition (Equation 2), the effect of changes in 𝑡 varies. For small values 

of 𝑡, where 𝐴 serves the entire market, 𝐵’s value capture is zero while 𝐴’s decreases in 𝑡. The 

intuition for this decrease is that, in order to sell to all buyers including the one farthest away from 

𝐴, the price that 𝐴 can charge is limited to 𝑢𝐴 − 𝑢𝐵 + 𝑝𝐵 − 𝑡, which equals 𝑢𝐴 − 𝑢𝐵 + 𝑐𝐵 − 𝑡 if 𝐵 

prices at marginal cost. This price implies profits for 𝐴 of 𝛼 − 𝑡. For 𝑡 > 𝛼 3⁄ , increases in 𝑡 
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amount to a reduction in the intensity of competition, such that both firms’ value capture increases 

in 𝑡. 

--- Figure 3 about here --- 

If Firm 𝐴 has the means to increase the intensity of competition in the noncooperative first 

stage of the biform game, it may use this power to change the ensuing cooperative game in its 

favor. Compare value capture at 𝑡 = 1, where 𝑣({𝐴, 𝐵}) = 2.13, 𝑣({𝐴}) = 0.89, and 𝑣({𝐵}) =

0.22, to that at 𝑡 = 0, where 𝑣({𝐴, 𝐵}) = 3, 𝑣({𝐴}) = 1, and 𝑣({𝐵}) = 0. By shifting 𝑡 from 1 to 

0, Firm 𝐴 increases overall value capture 𝑣({𝐴, 𝐵}) by 3 − 2.13 = 0.87, its own minimum 

residual 𝑣({𝐴}) by 1 − 0.89 = 0.11, and its added value 𝑣({𝐴, 𝐵}) − 𝑣({𝐵}) by 3 − 1.91 = 1.09, 

while decreasing 𝐵’s minimum residual from 0.22 to 0. Even though the shift to higher 

competition intensity increases 𝐵’s added value from 1.24 to 2, it is in every respect favorable to 

𝐴.  

This example nicely demonstrates how value-based business strategies enacted in the first 

stage of a biform game work in three different ways. They may directly improve the position of 

the focal firm, which for Firm 𝐴 means to increase buyers’ willingness-to-pay, 𝑢𝐴, or to decrease 

its cost, 𝑐𝐴. They may also weaken the competitor’s position through a reduction of buyers’ 

willingness-to-pay, 𝑢𝐵, or an increase in cost, 𝑐𝐵. To these established value-based business 

strategies a new type is added in the case of biform hybrid games. By changing the transportation 

cost parameter, 𝑡, a firm may shape to its advantage the competition in the potential NNI 

overshadowing the negotiation.  
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5. Discussion and conclusions 

I argue that negotiations frequently take place in the shadow of non-negotiated interactions 

(NNIs). Negotiating parties may face NNIs with an outside negotiation group, or between each 

other in case they reach no agreement. NNIs may arise due to externalities or to transactions that 

follow a protocol rather than being freely negotiated. Hybrid games model these NNIs as 

noncooperative games whose Nash equilibria establish the characteristic function underlying the 

negotiated interaction. I illustrate the usefulness of the concept using the examples of a Cournot 

quantity cartel and of competing gaming platforms, each of which requires collaboration between 

a console maker and a game developer. I furthermore show how hybrid games, combined with 

biform games, facilitate a new type of value-based business strategy (Brandenburger and Stuart, 

1996), one that targets the noncooperative interaction overshadowing the negotiations. 

The analysis has several limitations and suggests a number of generalizations. First, I assume 

existence and uniqueness of a pure strategy Nash equilibrium for each of the noncooperative 

games within hybrid games. If either condition is violated, the concept requires generalization to 

mixed-strategy equilibria or to multiple equilibria as arising, for example, in coordination games. I 

also exclude frictions (Brandenburger and Stuart 1996, Chatain and Zemsky 2011), assuming that 

within a negotiation group, all agents engage in unrestricted bargaining. Allowing for frictions 

would generalize the model, and would in particular allow for the analysis of specific positions 

such as that of a broker (Ryall and Sorenson 2007). Relatedly, I do not address the relevance of 

how members of a group actually negotiate, i.e., if they engage in pairwise negotiations (as in de 

Fontenay and Gans 2014) or in larger subgroups, possibly with all group members around the 

negotiation table. Finally, I assume, as Zhao (1992) and Montez et al. (2018), that negotiation 

groups (respectively, transaction networks) are exogenously given. The endogenous emergence of 
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negotiation groups is a highly relevant but elusive issue (e.g. Maskin 2016), to which the concept 

of hybrid games may fruitfully be applied.  

 

  



 

   

28 

 

References 

Adner R, Zemsky P (2006) A demand-based perspective on sustainable competitive advantage. 

Strategic Management Journal 27(3): 215–239. 

Aumann RJ, Drèze J (1974) Cooperative games with coalition structures. International Journal of 

Game Theory 3(4): 217-237. 

Aumann R, Myerson R (1988) Endogenous formation of links between players and of coalitions. 

In: Roth A (ed.), The Shapley Value, Cambridge: Cambridge University Press, 175-191. 

Brandenburger A, Stuart H (1996) Value-based business strategy. Journal of Economics & 

Management Strategy 5(1): 5-24. 

Brandenburger A, Stuart H (2007) Biform games. Management Science, 53(4), 537-549. 

Carraro C, Siniscalco D (1993) Strategies for the international protection of the environment. 

Journal of Public Economics 52: 309-328. 

Chander P, Tulkens H (1997) The Core of an Economy with Multilateral Environmental 

Externalities. International Journal of Game Theory 26: 379-401. 

Chatain O (2011) Value creation, competition, and performance in buyer-supplier relationships. 

Strategic Management Journal, 32, 76-102. 

Chatain O, Zemsky P (2011) Value creation and value capture with frictions. Strategic 

Management Journal 32: 1206-1231. 

de Fontenay CC, Gans JS (2005) Vertical integration in the presence of upstream competition. 

RAND Journal of Economics, 33, 544-572. 

de Fontenay CC, Gans JS (2008) A bargaining perspective on strategic outsourcing and supply 

competition. Strategic Management Journal 29(8): 841–857.  



 

   

29 

 

de Fontenay CC, Gans JS (2014) Bilateral bargaining with externalities. Journal of Industrial 

Economics 62(4): 756–788.  

Gans J, Ryall MD (2017) Value capture theory: A strategic management review. Strategic 

Management Journal 38(1): 17-41. 

Hotelling, H (1929) Stability in competition. Economic Journal 39: 47–57. 

Kreps D (1990) Game Theory and Economic Modelling. Oxford: Oxford University Press. 

MacDonald G, Ryall MD (2004) How do value creation and competition determine whether a firm 

appropriates value? Management Science 50(10): 1319-1333. 

MacDonald G, Ryall MD (2018) Do new entrants sustain, destroy, or create guaranteed 

profitability? Strategic Management Journal, 39, 1630-1649.  

Makowski L (1980) A characterization of perfectly competitive economies with production. 

Journal of Economic Theory 22: 208-221. 

Maskin E (2016) How can cooperative game theory be made more relevant to economics?: An 

open problem. In: Nash JF Jr., Rassias MT: Open Problems in Mathematics. Springer 

International Publishing, 347-350. 

Montez J, Ruiz-Aliseda F, Ryall MD (2018) Competitive intensity and its two-sided effect on the 

boundaries of firm performance. Management Science 64(6): 2716–2733.  

Obloj T, Zemsky P (2015) Value creation and value capture under moral hazard: exploring the 

microfoundations of buyer–supplier relationships. Strategic Management Journal 36: 1146–

1163. 

Ostroy J (1980) The no-surplus condition as a characterization of perfectly competitive 

equilibrium. Journal of Economic Theory 22: 183-207. 

Ray D, Vohra R (1997) Equilibrium binding agreements. Journal of Economic Theory 73: 30-78. 



 

   

30 

 

Ryall MD, Sorenson O (2007) Brokers and competitive advantage. Management Science 53(4): 

566–583. 

Scarf H (1971) On the existence of a cooperative solution for a general class of N-person games. 

Journal of Economic Theory 3: 169-181 

Thrall RM, Lucas WF (1963) n-person games in partition function form. Naval Research Logistics 

Quarterly X, 1963, 281-298. 

Von Clausewitz C (1832) Vom Kriege. Berlin: Ferdinand Dümmler Verlag. 

von Neumann J, Morgenstern O (1944) Theory of Games and Economic Behavior. Princeton, NJ: 

Princeton University Press. 

Zhao J (1992) The hybrid solutions of an n-person game. Games and Economic Behavior 4: 145-

160. 

  



 

   

31 

 

Figures  

Figure 1: Different negotiation and protocol structures 
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Figure 2: Gaming platforms: Realized and potential negotiation situations 
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Figure 3: Profits in a cartel and in competition (𝜇 = 2.5, 𝛼 = 1) 
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Appendix 

Solving the game requires two types of case distinctions. First, between a cartel and price 

competition; and second, between different ranges of the parameter, t. For very high values of t, it 

will not be profitable for the firms to serve the entire market. For simplicity, I exclude this case by 

restricting the analysis to parameter ranges where the entire market is being served. For very small 

values, the entire market will be served by the superior firm (Firm A); and for intermediate values, 

both firms make positive sales and together serve the entire market. 

Cartel 

For medium values of 𝑡, where the entire market is served and each firm has a positive market 

share, the position of the marginal consumer is given by 𝑥∗ = (𝑢𝐴 − 𝑢𝐵 − 𝑝𝐴 + 𝑝𝐵 + 𝑡) 𝑡⁄ . 

Maximizing their joint profits, firms will set prices in such a way that the marginal consumer has 

zero utility from buying either product: 𝑢𝐴 − 𝑝𝐴 − 𝑡𝑥
∗ = 0 ∧  𝑢𝐵 − 𝑝𝐵 − 𝑡(1 − 𝑥

∗) = 0. These 

equations allow to express 𝑝𝐵 as a function of 𝑝𝐴, as 𝑝𝐵 = 𝑢𝐴 + 𝑢𝐵 − 𝑝𝐴 − 𝑡. Total profits are 

given by 𝑥∗(𝑝𝐴 − 𝑐𝐴) + (1 − 𝑥
∗)(𝑝𝐵 − 𝑐𝐵). Substituting the above expressions for 𝑥∗ and 𝑝𝐵 and 

calculating the derivative with respect to 𝑝𝐴 yields the first-order condition, 𝑝𝐴
∗ =

(3𝑢𝐴 − 𝑢𝐵 + 𝑐𝐴 − 𝑐𝐵 − 2𝑡) 4⁄ . Inserting this and the corresponding term for 𝑝𝐵
∗  into the profit 

function and using the parameters 𝛼 and 𝜇 yields Π𝐶(𝛼, 𝜇, 𝑡) = 𝜇 − 𝑡 2⁄ − 𝛼2 (8𝑡)⁄ . This solution 

holds when the corresponding expression for the marginal consumer, 𝑥∗ = 𝛼 (4𝑡) + 1 2⁄⁄ , yields a 

solution within the interval [0,1], which is equivalent to |𝛼| ≤ 2𝑡 or, since I assume 𝛼 > 0, 𝛼 ≤

2𝑡.  

For high values of 𝑡, each firm 𝑋 serves only a local market of the size (𝑢𝑋 − 𝑝𝑋) 𝑡⁄ , realizing 

profits of (𝑝𝑋 − 𝑐𝑋)(𝑢𝑋 − 𝑝𝑋) 𝑡⁄ . Optimizing with respect to 𝑝𝑋 yields a market size of 
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(2𝜇 + 𝛼) (4𝑡)⁄  for 𝐴 and of (2𝜇 − 𝛼) (4𝑡)⁄  for 𝐵. These local markets merge and cover the entire 

market when their sizes add up to unity, which is the case for 𝜇 = 𝑡. This condition implies that 

the interior solution with each firm having a positive market share holds for 𝛼 2⁄ < 𝑡 < 𝜇. 

For low values of 𝑡, 𝑡 < 𝛼 2⁄ , the superior firm 𝐴 serves the entire market, setting 𝑝𝐴 such that 

the consumer at 𝑥 = 1 has zero utility: 𝑢𝐴 − 𝑝𝐴 − 𝑡 = 0. The profit function equals 𝑝𝐴 − 𝑐𝐴, such 

that equilibrium profits are Π𝐶(𝛼, 𝜇, 𝑡) = 𝜇 − 𝑡 + 𝛼 2⁄ . 

Competition 

As in the cartel case, for medium values of 𝑡 with the entire market being served and each firm 

having a positive market share, the position of the marginal consumer is given by 𝑥∗ =

(𝑢𝐴 − 𝑢𝐵 − 𝑝𝐴 + 𝑝𝐵 + 𝑡) 𝑡⁄ . The firms’ profit functions are given by 𝑥∗(𝑝𝐴 − 𝑐𝐴) and 

(1 − 𝑥∗)(𝑝𝐵 − 𝑐𝐵), respectively. Differentiating yields the first-order conditions, solving which 

leads to the equilibrium prices, 𝑝𝐴
∗ = 𝑡 + (𝑢𝐴 − 𝑢𝐵 + 2𝑐𝐴 + 𝑐𝐵) 3⁄  and 𝑝𝐵

∗ = 𝑡 +

(𝑢𝐵 − 𝑢𝐴 + 2𝑐𝐵 + 𝑐𝐴) 3⁄ , and to the position of the marginal consumer, (𝛼 + 3𝑡) (6𝑡)⁄ . Inserting 

these terms into the firms’ profit functions yields the equilibrium profits, Π𝐴
∗ = (3𝑡 + 𝛼)2 (18𝑡)⁄  

and Π𝐵
∗ = (3𝑡 − 𝛼)2 (18𝑡)⁄ .  

These solutions apply as long as the above term for the position of the marginal consumer 

yields a value within [0,1], which is the case for 𝑡 ≥ 𝛼 3⁄ . If 𝑡 < 𝛼 3⁄ , then 𝐴 serves the entire 

market. To ensure that 𝐵 does not sell anything, the value of 𝐴’s product for the buyer at 𝑥 = 1, 

𝑢𝐴 − 𝑝𝐴 − 𝑡, must be at least as large as that of 𝐵’s product assuming 𝐵 prices as marginal cost, 

𝑢𝐵 − 𝑐𝐵. Thus, 𝑝𝐴
∗ = 𝑢𝐴 − 𝑢𝐵 + 𝑐𝐵 − 𝑡, and Π𝐴

∗ = 𝑝𝐴
∗ − 𝑐𝐴 = 𝛼 − 𝑡. 

The maximal value of 𝑡 up to which the interior solution calculated above holds is determined 

as follows. For very large values of 𝑡, each firm serves a local market (as in the cartel case), and 

these markets merge to cover the entire interval [0,1] if 𝑡 = 𝜇. Thus, for 𝑡 > 𝜇 the interior solution 
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is not applicable. However, another condition needs to be observed, which is that the marginal 

consumer must have non-negative utility from buying either product. This condition implies that 

𝑡 < 2𝜇 3⁄ . In Figure 3, with 𝜇 = 2.5 and 𝑡 ≤ 1.5, it is fulfilled.  

 


